

Statistics

Lecture 5

Feb 19-8:47 AM

Class QZ 3

Consider the Sample
below

20	23	18	25
30	25	19	24
32	28		

68% Range

$\bar{x} \pm s$
 $= 24 \pm 5 \rightarrow [19 \text{ to } 29]$

95% Range

$\bar{x} \pm 2s$
 $= 24 \pm 2(5) \rightarrow [14 \text{ to } 34]$

Find

$$1) \bar{x} = 24.4 \approx 24 \quad \left. \begin{array}{l} \text{Round} \\ \text{to} \\ \text{whole#} \end{array} \right\}$$

$$2) s = 4.648 \approx 5 \quad \left. \begin{array}{l} \text{Round} \\ \text{to} \\ \text{whole#} \end{array} \right\}$$

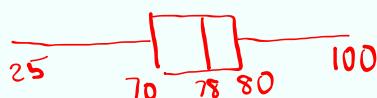
$$3) s^2 = \frac{108}{5} \quad \left. \begin{array}{l} \text{Reduced} \\ \text{Fraction} \end{array} \right\}$$

Find Z-Score for
data element 30.

$$Z = \frac{x - \bar{x}}{s} = \frac{30 - 24}{5} = \frac{6}{5}$$

$$-2 \leq Z \leq 2 = 1.2$$

usual element


Jan 13-7:04 PM

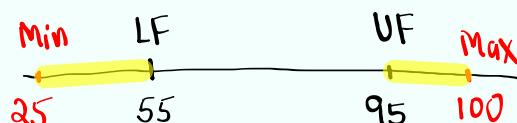
Class QZ 4

Consider the 5-Number Summary below

Min	25	Q ₁	70	Med	78	Q ₃	80	Max	100
-----	----	----------------	----	-----	----	----------------	----	-----	-----

1) Draw box plot

2) Find IQR


$$IQR = Q_3 - Q_1 = 10$$

3) Find upper fence

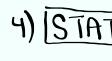
$$\begin{aligned} UF &= Q_3 + 1.5(IQR) \\ &= 80 + 1.5(10) = 95 \end{aligned}$$

4) Find lower fence

$$\begin{aligned} LF &= Q_1 - 1.5(IQR) \\ &= 70 - 1.5(10) \\ &= 55 \end{aligned}$$

Outliers 25 to 55 or 95 to 100

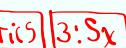
Jan 14-4:23 PM


find \bar{x} , s , and s^2 for the group data

below.

1) find class MP

class limits	class F	class MP
18 - 30	5	24
31 - 43	8	37
44 - 56	10	50
57 - 69	7	63


2) class MP \rightarrow L13) class F \rightarrow L2

4) List L1

$$\bar{x} = 45.23$$

for s^2

$$S = 13.434$$

$$n = 30$$

$$S^2 = \frac{157001}{870}$$

Jan 14-4:47 PM

Below data are Scores for 25 randomly

Selected exams.

$$1) n=25$$

58 63 65 69

70 72 74 75

75 78 80 82

82 82 85 86

88 90 93 95

96 97 100 100

105

Find P_{15}

$$L = \frac{15}{100} \cdot 25 = 3.75 \rightarrow L=4$$

2) STEM Plot

5 | 8

6 | 359

7 | 024558

8 | 0222568

9 | 03567

10 | 005

$$P_{15} = 4^{\text{th}} \text{ element} = \boxed{69}$$

15% 85%

69

Find P_{50} (Median)

$$L = \frac{50}{100} \cdot 25 = 12.5 \rightarrow L=13$$

$P_{50} = 13^{\text{th}}$ element

= 82

50% 50%

Find P_{80}

$$L = \frac{80}{100} \cdot 25 = 20$$

$P_{80} = \frac{20^{\text{th}} \text{ element} + \text{Next}}{2}$

= $\frac{95 + 96}{2} = \boxed{95.5}$

Jan 14-4:55 PM

5 | 8
6 | 359
7 | 024558
8 | 0222568
9 | 03567
10 | 005

find K Such that

$$P_K = 75 \rightarrow \text{Below}$$

$$K = \frac{B}{n} \cdot 100, \text{ whole \%}$$

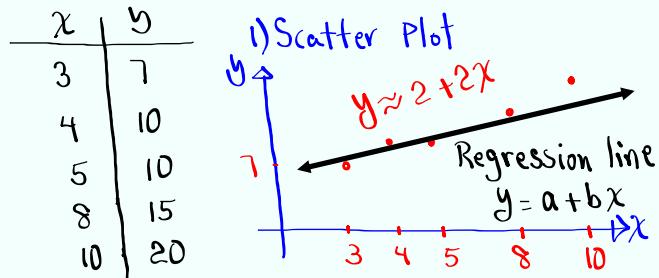
$$= \frac{7}{25} \cdot 100 = 28$$

$$\boxed{P_{28} = 75}$$

Find K Such that

$$P_K = 80 \rightarrow \text{Below}$$

$$K = \frac{B}{n} \cdot 100, \text{ whole \%}$$


$$= \frac{10}{25} \cdot 100 = 40$$

$$\boxed{P_{40} = 80}$$

$$\boxed{\text{SG 5-8}} \checkmark$$

Jan 14-5:06 PM

Consider the chart below

clear all lists

$x \rightarrow L1$, $y \rightarrow L2$

STAT \rightarrow **CALC**

2:2-Var Stats

$$\sum x = 30$$

$$\sum x^2 = 214$$

$$n = 5$$

$$\sum y = 62$$

$$\sum y^2 = 874$$

$$\sum xy = 431$$

STAT \rightarrow **CALC**

8:LinReg(a+bx)

$$a = 1.988 \approx 2$$

$$b = 1.735 \approx 2$$

$$r^2 = 0.973 \approx 97\%$$

$$r = 0.987$$

Jan 14-5:11 PM

How to find a & b :

$$a = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - (\sum x)^2} = \frac{62 \cdot 214 - 30 \cdot 431}{5 \cdot 214 - 30^2} = \frac{338}{170} \approx 1.988$$

$$\sum x = 30$$

$$\sum y = 62$$

$$\sum x^2 = 214$$

$$\sum y^2 = 874$$

$$n = 5$$

$$\sum xy = 431$$

$$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2} = \frac{5 \cdot 431 - 30 \cdot 62}{5 \cdot 214 - 30^2} = \frac{295}{170} = 1.735$$

Jan 14-5:20 PM

r^2 Coef. of determination

Always in whole %.

It tells us what % of y -values are explained by x -values

From Last example $r^2 \approx 97\%$.

97% of y -values are explained by x -values, 3% are unexplained.

Jan 14-5:29 PM

r Linear Correlation Coef.

$$-1 \leq r \leq 1$$

When r is close to ± 1 ,

Linear Correlation is Significant.

When r is close to 0,

Linear Correlation is not Significant.

From Last example $r = .987$

Very close to 1 \rightarrow Significant.

Jan 14-5:31 PM

How to compute r :

$$r = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$

$$\begin{aligned} \sum x &= 30 & \sum y &= 62 & = \frac{5 \cdot 431 - 30 \cdot 62}{\sqrt{5 \cdot 214 - 30^2} \sqrt{5 \cdot 874 - 62^2}} \\ \sum x^2 &= 214 & \sum y^2 &= 874 & = \frac{295}{\sqrt{170} \sqrt{526}} \\ n &= 5 & \sum xy &= 431 & = \frac{295}{\sqrt{89420}} = 0.987 \end{aligned}$$

295 [\circ] [2nd] [x^2] 89420 [enter]

Jan 14-5:34 PM

Making Predictions:

If r is significant \Rightarrow use regression line

If r is not significant \Rightarrow use \bar{y}

using last example, Predict y when $x=6$

1) Assume r is significant

$$y \approx 2 + 2x = 2 + 2(6) \approx 14$$

2) Assume r is not significant.

$$\text{use } \bar{y} = \frac{\sum y}{n} = \frac{62}{5} = 12.4$$

SG 9 ✓

Jan 14-5:41 PM

SG 10-13
Introduction to probabilities
chances for an event
to happen.

$E \rightarrow$ Desired event

$P(E) \rightarrow$ Prob. that E happens.

$$P(E) = \frac{\text{Total # of only desired outcomes}}{\text{Total # of all outcomes}}$$

12 Students

8 Females

Select one student

$$P(\text{Select a female}) = \frac{8}{12} = \boxed{\frac{2}{3}}$$

A standard deck of playing cards
have 52 cards, 26 Red, 4 aces.

$$P(\text{Select a red card}) = \frac{26}{52} = \boxed{\frac{1}{2}} = 0.5$$

$$P(\text{Select an ace}) = \frac{4}{52} = \boxed{\frac{1}{13}}$$

4 \div 52 Math Frac Enter

Jan 14-6:03 PM

Acceptable answers:

1) Reduced fraction

2) Decimal but rounded to
3-dec. places
when needed

3) Scientific Notation.

A standard deck of playing cards
has 52 cards, 12 face cards, 4 Aces.

Draw one card,

$$P(\text{Draw Face or Ace}) = \frac{12+4}{52} = \frac{16}{52} = \boxed{\frac{4}{13}} = 0.308$$

$$P(\text{Draw Face and Ace}) = \frac{0}{52} = \boxed{0}$$

Jan 14-6:10 PM

Some rules and terminology

- 1) $0 \leq P(E) \leq 1$
- 2) Sum of all probabilities is 1.
- 3) $P(E) = 1 \iff$ Sure event
- 4) $P(E) = 0 \iff$ Impossible event
- 5) $0 < P(E) \leq .05 \iff$ Rare event

Jan 14-6:16 PM

If we randomly select one person,
find the prob. that he/she has
a birthday

1) today $\frac{1}{365} \approx .003$
Rare event

2) this month $\frac{1}{12} = .083$
Not a rare event

Jan 14-6:20 PM

$E \rightarrow$ Desired event

$P(E) \rightarrow$ Prob. that E happens

$\bar{E} \rightarrow E\text{-bar, } E\text{-complement, not } E$

$$P(E) + P(\bar{E}) = 1$$

$$P(\bar{E}) = 1 - P(E)$$

Complement Rule

Suppose $P(E) = .004$

1) Write $P(E)$ in % notation

$$.004 = \boxed{.4\%}$$

2) Write $P(E)$ in reduced fraction

$$.004 \text{ [Math]} \text{ [I: } \text{ Frac } \text{ [Enter]} \quad \frac{1}{250}$$

3) Find $P(\bar{E})$

$$P(\bar{E}) = 1 - P(E)$$

$$= 1 - .004 = \boxed{.996}$$

Jan 14-6:24 PM

Select one number from

1 2 3 4 ... 36 37 38 39 40

$$1) P(\text{select 5}) = \frac{1}{40}$$

$$2) P(\text{select below 5}) = \frac{4}{40} = \frac{1}{10}$$

$$3) P(\text{select 35 or above}) = \frac{6}{40} = \frac{3}{20}$$

$$4) P(\text{select } \boxed{\text{below 5}} \text{ or } \boxed{\text{at least 35}}) \\ = \frac{4+6}{40} = \frac{10}{40} = \boxed{\frac{1}{4}}$$

$$5) P(\text{select below 5 and at least 35})$$

$$= \frac{0}{40} = \boxed{0}$$

Impossible event.

Jan 14-6:31 PM

I surveyed 100 voters.
 chart below shows outcome.
 Question was Do You Support ICE operation?

	Yes	No	Total
Democrat	15	35	50
Republican	40	10	50
Total	55	45	100

Select one of them

$$1) P(\text{Yes}) = \frac{55}{100} = 0.55 \quad 2) P(\text{Democrat}) = \frac{50}{100} = 0.5$$

$$3) P(\text{Yes and Democrat}) = \frac{15}{100} = 0.15$$

$$4) P(\text{Yes or Democrat}) = \frac{90}{100} = 0.9$$

SG 10 ✓

Jan 14-6:37 PM

Addition Rule:

Keyword OR

one action event

$$P(A \text{ or } B) = P(A) + P(B) - P(\text{Both})$$

$$P(A) = 0.7, P(B) = 0.6, P(A \text{ and } B) = 0.4$$

$$1) P(\bar{A}) = 1 - P(A) = 1 - 0.7 = 0.3$$

$$2) P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

↑
 addition
 Rule

$$= 0.7 + 0.6 - 0.4 = 0.9$$

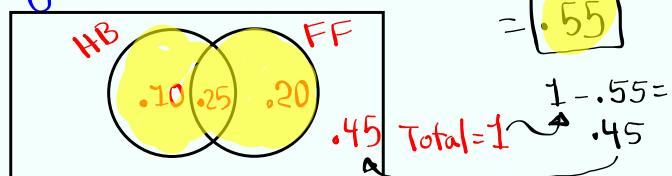
$$3) P(\bar{A \text{ or } B}) = 1 - P(A \text{ or } B)$$

$$= 1 - 0.9 = 0.1$$

Jan 14-6:46 PM

$$P(HB) = .35$$

$$P(FF) = .45$$

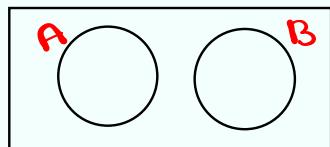

$$P(HB \text{ and } FF) = .25$$

$$1) P(\overline{HB}) = 1 - .35 = .65$$

$$2) P(FF) = 1 - .45 = .55$$

$$3) P(HB \text{ or } FF) = P(HB) + P(FF) - P(HB \text{ and } FF)$$

$$\text{Using Venn Diagram} = .35 + .45 - .25$$

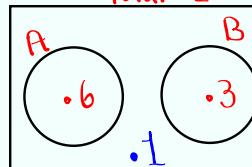


Jan 14-6:53 PM

Mutually Exclusive Events

Disjointed events

$$P(A \text{ and } B) = 0$$


$$P(A) = .6 \quad P(B) = .3$$

$A \notin B$ are
M.E.E.
Total = 1

$$1) P(\overline{A}) = 1 - P(A) = .4$$

$$2) P(\overline{B}) = 1 - P(B) = .7$$

$$3) P(A \text{ and } B) = 0$$

$$4) P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) = .6 + .3 - 0 = .9$$

Jan 14-7:02 PM

class QZ 5

x	y
2	5
3	9
5	12
6	12
8	15

use $\text{LinReg}(a+bx)$ to
find

$$1) a = 3.316 \approx 3$$

$$2) b = 1.518 \approx 2$$

$$3) r^2 = .918 \approx 92\% \quad \left. \right\} \text{whole \%}$$

$$4) r = .958 \quad \left. \right\} \text{3-dec.}$$

Jan 14-7:08 PM